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The Laguerre method proposed by Furmanski and Petronzio [Nucl. Phys. B 195 (1982), 
2371 is used to solve integro-differential equations found in high energy scattering processes 
and solid state physics. The method uses properties of Laguerre polynomials to convert the 
integral to a sum, while the remaining differential equation is solved analytically using an 
evolution operator approach to avoid numerical approximation errors. The present approach 
is more general in the evolution operator development and in implementation so that the 
method may be used in solving a more general class of integro-differential equations. The 
Laguerre method is shown to be more efficient and accurate than other methods used to solve 
this type of equation. f> 1985 Academic Press, Inc. 

I. INTRODUCTION 

In various problems of mathematical physics, one encounters integro-differential 
evolution equations of the form [l-3] 

dF(x, tf -=P(x)@F(x, t) 
dt 

where the convolution operation @ is defined by 

P(x)@F(x, I)- j-;$Z’(;) F(y). 

As an example, in perturbative quantum chromodynamics (QCD), the leading can- 
didate for a theory of strong interactions, F(x, t) represents a quark or gluon struc- 
ture function, the evolution parameter t is related to the momentum, x is the frac- 
tional momentum of a quark which partakes in the scattering process and P(x) is a 
probability function. Equation (1.1) represents the evolution of the distribution of 
non-singlet quarks within a hadron as one probes deeper with a more energetic par- 
ticle. In solid state physics, Eq. (1.1) is a form of the Boltzmann equation, describ- 
ing the deceleration of charged particles in solids [33. 

Traditionally, two approaches have been used to solve (1.1): the Mellin trans- 
form [4-61 and brute-force numerical methods [7, 81. The Mellin transform 
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method suffers from notorious difficulties in inverting the transform to find the 
solution in terms of F(x, t). Brute-force numerical methods tend to be inefficient 
and prone to instability, depending upon the approximations used to solve (1.1). A 
third approach has recently been proposed by Furmanski and Petronzio [ 11, in 
which they make an expansion of F(x, t) in terms of Laguerre polynomials to con- 
vert the convolution (1.2) into a simple sum. The main objectives of this paper are 
to discuss why this method is more efficient and accurate than the other methods, 
to propose a more convenient numerical scheme for implementing the method, and 
to present examples in high energy and solid state physics, for which the Laguerre 
method is practical. Our approach also provides a basis for extending the method 
to solve a larger class of integro-differential equations. 

The Laguerre method consists of a variable change from x to z = -In(x), 
followed by an expansion and truncation of P(z) and F(z, t) as a finite series of 
Laguerre polynomials. The convolution (1.2) reduces to a sum of Laguerre 
polynomials in z. One can then construct an evolution operator [9] to solve the 
resulting differential equation without making additional approximations (e.g., 
Euler, Taylor series or Runge-Kutta). Thus, both the integral and differential 
operations of ( 1.1) can be solved in closed form. Numerically, the Laguerre method 
is more stable and more accurate than other methods in that it allows one to deal 
with the functions F(x, t) directly rather than with their integral transforms. 

In Section II, we present the theoretical background of the Laguerre method to 
solve (1.1) in QCD. We include development of the method along with derivations 
of the key parameters used in solving (1.1). Many of the details were not covered in 
the original reference [ 11. In Section III, we outline an efficient numerical 
procedure for implementing the Laguerre method. The new procedure is easier to 
implement in many cases and at least as accurate as that proposed by Furmanski 
and Petronzio. A comparison of solution methods is included with regard to 
accuracy and stability. We present possible applications of the method in Sec- 
tion IV, which include: deep-inelastic lepton-positron scattering and the Boltzmann 
equation in solid state physics. We summarize the method and its uses in section V. 

II. THEORETICAL BACKGROUND 

A. The Evolution Equations 

In QCD, the inclusive lepton distribution in the hard lepton-hadron process: 
l+ h + I’ + anything, has the form of a convolution of a lepton-parton (quark or 
gluon) cross section with parton densities. The lepton distributions and parton den- 
sities are expressed in terms of the variables q2 and x, where q is the momentum 
transfer to the parton and x is the fraction of momentum of the struck parton 
relative to the hadron momentum. If we denote the inclusive lepton distribution in 
the above process by ph(x, q2) and let p label the QCD partons, we have 

Pi&> q2) = c rb:; 0 PAk q2)1, (2.1) 
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where &, is the lepton-parton cross section and the convolution is defined by 

C(x)=A(x)@B(x)=J’ dyy-‘A(x/y) B(y). (2.2) 
x 

As we probe deeper into the hadron with particles of higher energy, we expect to 
reveal internal parton structure. In QCD, this translates into investigating the q2 
evolution of the parton densities, pJx, q2). 

In QCD with 3 colors and f flavors of quarks, the cross sections (e.g. fir;) are 
written as power series in the strong coupling parameter cc,(q*), where 

dq2) 2 

[ 
Bl In Mq2/A2) 

-=- cwq2/~2)1-’ 1 -E ln(q2,A2) 
271 Al + 0 ( /n2cqt,n2,)]. (2.3) 

In (2.3) PO = 11 - f f, 8, = 102 - Qf and n is a free scale parameter in the theory, 
which is usually extracted from data. The parton densities, whose q2 evolution is to 
be investigated, are expressed in three categories. The valence quarks are the 
primary constitutents of the hadron and their distribution can be written as 
qc.(x, q2). The sea of quarks, qs(x, q2), which surround the valence quarks, and 
gluons, G(x, q2), which hold the hadron constituents together, complete the hadron 
structure. It is more convenient to write the evolution equations in terms of the 
variable t = -(2/p,,) . ln( c1,( q2)/ct,( qfj)), w h ere IX, is the strong coupling strength and 
qi is an initial value of q2 at which an initial distribution may be determined from 
data. The evolution equations can then be written as [2] 

g qu(x, t) = P,,(x) 0 9”(X, r), 

(2.4b) 

where PJx) (i, j = q, G) are the probabilities of finding parton j, having momentum 
xp, within parton i, having momentum p. These probabilities generally depend upon 
powers of a,(q2), and are given to leading order in a,(q2) in Ref. [Z]. Equations 
(2.4a) and (2.4b) are denoted the non-singlet and singlet cases, respectively. 
Typically, one may solve (2.4) for the parton distributions, subject to initial con- 
ditions, and convolute the result with the hard scattering cross sections using (2.1) 
to predict the inclusive lepton distribution. 

At this point, a number of different solution methods have been tried. The most 
popular approach consists of taking the Mellin transform of (2.4) to convert the 
convolutions into a simple product [4-61. The evolution equations are then solved 
in closed form. Problems arise with this method regardless of how one continues 
the analysis. Comparing the Mellin moments of the evolution functions with 
experiments requires data in the complete kinematic range of x, 0 <x < 1, which is 
generally not available. Alternately, Meilin inversion of the solution is cumbersome, 
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even in the simplest case [7]. Numerical solution of (2.4) by brute force is generally 
inefficient and requires approximations, which yield the method numerically 
unstable [7, 8-J. The Laguerre method [l] is presently the most efftcient method 
that calculates the evolutions directly, so that meaningful comparison can be made 
to data. 

The initial step in solving (2.4) is to convert the convolution to a simple 
operation in the same fashion as the Mellin transform. To understand the nature of 
the convolution, we note that the functions P,.(x) and the evolution functions are 
polynomials in the variable x. The convolution (2.2) of two arbitrary polynomials 
of x results in a polynomial of x plus terms involving In x. By changing the variable 
x to z = -In x, (2.2) takes the form of Laplace transform convolution, 

P@lqdyP(y)F(z-y). (2.5) 

When one convolutes two polynomials of z in this manner, the result is a 
polynomial of z without extraneous logarithmic terms. Thus polynomials of z are 
closed with respect to the convolution (2.5). This indicates that the Laplace trans- 
form may be a more natural choice for converting (2.4) to a simpler form. The 
Laplace transform, defined by 

Lf[f(x)] = F(s) = s,Z dx.e-““f(x), 

is similar to the orthogonality condition for Laguerre polynomials, 

s m dx.e-‘L,(x) L,(x) = 6,,,, 
0 

(2.6) 

(2.7) 

where a,,, is the Kronecker delta function, corresponding to the conditions: 6,, = 1 
and a,,,,, =o (m#n). 
recurrence relations: 

The Laguerre polynomials can be derived from their 

(n+ 1 )L,+,(z)=(2n+l-z)L,(z)-nL,-,(z), (2.8) 

where L,(z) = 1 and L (z) = 1 -z. Since the Laguerre polynomials are orthogonal 
we can expand the polynomials P,(z) and the evolution functions as sums of the 
form 

P(z)= f P,L(z), 
?I=0 

(2.9a) 

where 

P,= 
I O” &epfL,(y) P(Y). 

0 

(2.9b) 
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Then, we use the property that [12] 

~,(z)o~,(z)=~,+,(z)-~,+,+,(z)~ (2.10) 

to convert the convolutions in (2.4) to simple differences. These equations then take 
the form of simple first order differential equations, for which we can construct 
evolution operators to generate solutions. 

B. Construction of the Evolution Operator 

Once the integral (2.2) has been transformed into a sum, the remaining first order 
differential equation may be solved by constructing an evolution operator [9]. Two 
advantages to this approach include: elimination for the need of approximate 
numerical solutions by solving the equation analytically and the ability to extend 
the method to any class of integro-differential equations solvable by use of an 
evolution operator. 

Given a first order ordinary differential equation with real variables having the 
form dx/dt = F(x, t), we can define a mapping, E,, which traces the evolution along 
the solution curve from an initial point, x0. The mapping is defined in the evolution 
variable t by E,(x,) = x(t + to), so that the solution to the differential equation can 
be written as x(t) = E,- ,&x0). The mapping also has an inverse (E,-’ = E_,) and a 
composite rule, (E, + ,(x0) = E,s( E,(x,)). Determination of the evolution operator is 
equivalent to finding the solution to the differential equation. 

We can write (2.4) as 

dQ(x> t) 
-=P(x)OQ(x, t), dt 

(2.11) 

where Q represents q&x, t) in the non-singlet case, (2.4a) or the matrix (@;:$,‘) in the 
singlet case, (2.4b). 

Denoting the evolution operator (E,) for Q(x, t) as E(x, t), then the solution to 
(2.11) can be written as 

Qb, t) = E(x, t) 0 Q(x, t = 0), (2.12) 

where Q(x, t = 0) is a suitable initial parametrization of the quark and gluon 
functions [4]. Substituting (2.12) into (2.1 l), we obtain the differential equation for 
the evolution operator 

dE(x, t) 
- = P(x) 0 E(x, t). 

dt 
(2.13) 

We now use the Laguerre method to modify the convolution by changing the 
variable x to z = -In x and expand P(z) and E(z, t) in terms of Laguerre 
polynomials. 
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The differential equation for the Laguerre coefficients of E(z, t) is, then, 

(2.14) 

where 
Pn-m=P,-m-P,-,~1 and (P-, EO). (2.15) 

The Laguerre coefficients P,, occuring in (2.15), may be calculated if one knows the 
Mellin transform in x (or Laplace transform in z) of the quark and gluon 
probabilities P, (i, j = q, G) [lo]. The Laguerre coefficients Pk are found by 

(2.16) 

for each of the probability functions, P,, where P represents the corresponding 
Mellin transform. One may then calculate the coefficients p+,,, in (2.14) by using 
(2.15). Since the Laguerre sums for P(x) and E(x, t) converge rapidly, we truncate 
them to a given value of n. We will solve (2.14) for the evolution operator coef- 
ficients, E,(t), in the non-singlet (2.4a) and singlet (2.4b) cases separately. 

In the non-singlet case, (2.14) can be written in matrix form as 

or in matrix notation: d&(t)/& = P&(t). The solution to (2.17) is 

E( 2) = ePre( t = 0) = ePo”eA’c( t = 0), (2.18) 

where epf corresponds to the evolution operator of (2.17), I is the n x n identity 
matrix, and A is the lower diagonal n x n matrix equal to P- poZ. The initial value 
of the matrix E, e(t = 0), is chosen to be the column matrix consisting of all l’s, 
which corresponds to E(z, 0) = 6( 1 -z). Since A”+ ’ = 0, we can write eat as 

e A~=,.g$ (2.19) 

We now have the explicit form for the evolution operator coefficients E,(t) and 
hence, E(x, t). For convenience, we can construct a recursive relation to evaluate 
the matrix eA’. If we let Bk represent the sum of elements of the mth row of Ak, then 
for each value of n, Brj = 1 and 

n-l 
Bk+‘- 

n - ,zk Pn- iBF. 
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The coefficients E,(t) for the non-singlet case are then given by [Appendix I] 

E,(t) = epor. f (Bitk/k!). 
k=O 

(2.21) 

The corresponding evolution operator is 

ez, 2) = 2 J%(f) L(z), (2.22) 
II = 0 

from which the valence quark distributions q"(x, t) may be found. 
The singlet case involves a coupled set of equations written in matrix form (2.4b). 

The evolution operator for the corresponding coefficients E,(t) is not a simple 
exponential term as in (2.18). We can construct the singlet version of the evolution 
operator, ePr, from the distinct eigenvalues of the P matrix in (2.4b) [ll]. Let us 
denote the eigenvalues of P by i,, and i2, with AA = A1 - &. Then define the projec- 
tion matrices Q, and Q2 as 

whereby 

Q, = (P-&I)/AA and Q,= -(P-&1)/A& (2.23) 

P=l,Q,+bQ,. (2.24) 

Since Q, and Q2 are orthogonal and idempotent, we can write powers of P as Pk = 
JV:Q, +niQ,. Using (2.19), we can then write 

e ,” = eh’Q, + ei-2rQ2, (2.25) 

from which we construct the singlet evolution operator. 
Since Q, and Q2 are orthogonal we can write the evolution matrix as the sum of 

two parts: E(z, t) = E,(z, t) + E,(z, t). Then, using (2.14), 

y= i (n;,n~,-~~j,,~,~,)E,(t), 
p=o 

(2.26) 

where li,j is the jth Laguerre coefficient of the ith eigenvalue with II,,-, = 0. In 
(2.26), the E,(t) terms form a column vector (as in 2.17) whose elements are 2 x 2 
matrices. The Laguerre coefficients of the eigenvalues (Al,k and J.,,,) are found by 
Eq. (2.16). 

If we let ~~(1) represent the column vectors E,,(t) in (2.26), we may write them in 
the form 

Ei( t) = ei.j,oteDfrE,(t = 0), (2.27) 

where Dj are lower-diagonal matrices of ii,k terms, similar to the matrix A in the 
non-singlet case. As before, we can derive a recursive relation to evaluate the 
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matrices eD”. It can be shown that [ 111: I,,, E ,J = -28/9 and ,!Z,0 = 0 (by momen- 
tum conservation), so the Laguerre coefftcients are given by 

E,(t) = i 41 (AL? + d!Bp), 
k=ok! 

(2.28) 

where 

n-l 
AIj=Q,,,; B:=Ql,n; A;k+l)=lQ,~,A~k)+ iFk Pn ~ iAik’ 

and 

n- 1 

B(k+ l)F -AQ,,B;k’+ c P,-;By’. n 
i=k 

The evolution matrix for the singlet case is given by (2.22) with E,,(t) given by 
(2.28). 

To summarize the procedure for the singlet case, we first calculate the coefficients 
pi in (2.15) for all the singlet elements P, in (2.4b). Then calculate A: = QZ,O and 
Bt = Q,,, from (2.23) and the appropriate Laguerre expansion. By knowing any Af: 
and Bt , we generate Af: + , and Bz+ , by the method outlined in Appendix II. The 
evolution operator is then found from (2.22) and (2.28). 

At this point, one may include higher order contributions to the structure 
function matrix, Q(z, t). We will discuss this technique in a subsequent section. In 
the next section we outline the key features of the numerical determination of the 
non-singlet and singlet structure functions using the Laguerre method. 

III. NUMERICAL CALCULATIONS 

A. Program Details 

In general, the program may be run on any machine with 128K available RAM 
(8-bit words) in double presicion real arithmetic. In this section, we will discuss the 
algorithms used to calculate the evolution matrices and associated parameters for 
the non-singlet and singlet cases. We discuss the accuracy and convergence of the 
program in Section B, along with criteria for choosing an optimum truncation 
point for the sums in (2.9) and (2.22). The results for particular initial quark and 
gluon distributions are presented in Section C, in addition to a comparison of 
methods for solving (2.4a) and (2.4b). 

The same program can be used for solving (2.4a) and (2.4b), with the non-singlet 
as a special case of the singlet. In the non-singlet case, Bi = 0, for all k, n and AZ = 1 
for all n in (2.28). This feature allows one to elliminate the a; and bf: terms in (A2.9) 
when calculating non-singlet structure functions. Otherwise the procedure outlined 
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in Section II is applicable to both cases. When choosing a truncation for the sums 
in (2.9) and (2.22), one must balance the effects of enhanced convergence and 
accumulated roundoff error. The number of terms included must be large enough to 
ensure convergence of the series, but small enough so that roundoff errors in matrix 
multiplications and iterations do not significantly affect the accuracy. When 
calculating Laguerre coefficients, as in (2.16), one must find the optimal truncation 
point to satisfy these criteria. We found that about 15 terms were sufficient to 
ensure convergence of all terms to within a few percent, while roundoff errors 
caused erratic behavior of the sums beyond 15 terms. Another criterion for deciding 
on a value of the number of terms in the sums (N) may be the memory capacity of 
the machine, since array storage increases as N’. 

It is a straightforward process to calculate e, (= Q,,,) and e2 (= Q,,,). In the 
non-singlet case these variables are not explicitly used, but in the numerical 
procedure they correspond to e, = 0 and e, = Z, where Z is the 2 x 2 identity matrix. 
In the singlet case, we use (2.23) and the procedure outlined in Section II to 
calculate e, and e, analytically and enter these as inputs to the program. 

We used (2.16) to calculate the Laguerre coefficients of the Wilson functions 
PJz), whose explicit form is given in Ref. [ 111. To be consistent with the treatment 
in Ref. [ 11, the functions occur in the form zP,,(z) in the Altarelli-Parisi 
equations (2.4), so their Laguerre coefficients were calculated accordingly. 

In order to calculate the Laguerre coefficients for the structure functions at qz, we 
assume the x behavior has the form F(x) = Ax’( 1 - x)~, where l> - 1 and m 2 0 
[4]. Then the Laguerre coefficients Fj are found by using (2.16) as follows. We 
expand (1 -x)“’ in a series 

x 
(1 -xy= 1 fiXi, (3.1) 

i=o 

where the coefficient f, is obtainable recursively by using f. = 1, fi = -m and 
f. = -hfi , ((m - i + 1 )/i). The moment of F(x) is given by 

(3.2) 

Then 

(3.3) 

From (2.16) we see that the term in brackets corresponds to the Laguerre 
coefficients, F,. 

Similar series expansions can be used for the functions P&x), provided that they 
remain analytic over the range of x. The main idea is to expand each PV(x) as a 
power series in x: 

P(x)= 2 UkXk. 
k=O 

(3.4) 
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Then, from (2.16), the Laguerre coefficients for P(x) are given by 

p,= f ankn 
k=O (1 +k)“+” (3.5) 

This method is particularly useful when P(x) is complicated or when it contains 
functions whose moments are difficult to calculate [ 171. There is a tradeoff between 
truncation errors in using moments versus the power series expansion. We have 
found that the power series method is much more accurate for cases where P(x) 
contains many terms. This is due to multiple truncations of (2.16), one for each 
term in P(x), versus a single truncation of the power series in (3.5). Furthermore, 
one does not have to calculate moments for each term in P(x) to find the Laguerre 
coefficients. The only conceivable drawback to this method would involve functions 
whose power series are slowly convergent over the range in x. In many cases, 
modification can be made to power series coefficients to enhance convergence, such 
as with In(x) in Ref. [ 121. We have constructed a data bank of power series expan- 
sions for often used functions (logs, polynomials, certain logarithmic integrals). By 
adding and multiplying the power series expansions, we can calculate the series for 
complex forms of P(x) in a short time and with highly accurate results. Once the 
Laguerre coefficients P, are calculated, we use (2.15) to determine the pi coefficients 
contained in the evolution matrix (2.20 and 2.28). 

The procedure outlined in the last section is used to determine matrices Ai and 
BE, occurring in the evolution matrix coefficients, E,(t). [Appendixes I and II]. The 
determination of the non-singlet matrices is a special case of the singlet matrices. 
For the non-singlet case, one uses the initial conditions e, E 0 (matrix) and e, = I 
(the identity matrix). Under these conditions, all Bf: terms are identically zero, 
A: = 1 for all n 2 0 and the Af: terms are multiple sums of the pi matrices given in 
(2.15). The initial gluon structure function at qi is set to zero for the non-singlet 
while the initial valence quark distribution at qi is given a suitable parametrization 
as described above. The Laguerre coefficients of the evolution matrices are 
calculated using (2.21), then one convolutes the evolution matrix with the quark 
distribution to obtain the non-singlet structure functions. In the singlet case, we 
save computer time by explicitly evaluating the matrices a:, bi , A:, BT, A f and Bf . 
As an accuracy check we can show that 

A:: = (e,p, Ye2 and (3.6) 

for all n, so that comparison can be made to the iterative equations. We will discuss 
this accuracy in the next subsection. 

The final step in computing the leading order evolution, is the convolution of the 
Laguerre coefficients of the evolution matrices with those of the initial quark and 
gluon distributions. We proceed in a manner analogous to the determination of the 
evolution matrices, outlined in (2.13) through (2.15). First, we denote the evolution 
matrix as E and the initial quark/gluon distribution matrix as F and then expand 
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both as sums of Laguerre polynomials truncated at a sufficiently large number of 
terms. The convolution is found by 

EOF= f -fL(t)L,(z)O 2 F,,&,(z) 

(3.7) 

where E,~~=E+-E,~~-,. In the last step, we used the convolution property of 
Laguerre polynomials given in (2.10). Evaluating the term in parentheses in (3.7) 
involves IZ + 1 matrix multiplications, which may contribute to the choice of a trun- 
cation point for the sum over n. 

Higher order perturbative QCD corrections are introduced into the evolution 
equation via the Pg(z) functions as powers of cc,(t) [ 13, 213. The procedure for 
including this type of correction consists of convoluting the higher order ~1, terms in 
PJz) with the evolution matrix as in (2.13) through (2.15). The terms pi in (2.15) 
are modified to include the perturbative corrections. Details of this calculation are 
shown in Section IV A. Non-perturbative corrections, such as higher twist con- 
tributions, modify the structure functions directly [14] and may be included after 
the leading order evolution has been calculated. 

B. Convergence and Accuracy 

The Laguerre method eliminates numerical errors in integration by converting 
the convolution to a sum, and in differentiation by use of the evolution operator. 
The two remaining major sources of error are due to truncation of sums and roun- 
doff in matrix multiplication. Since convolution in the variable z = -In x leads 
naturally to use of Laguerre polynomials, it is no surprise that if we expand the key 
functions in terms of arbitrary orthogonal polynomials in z, the Laguerre expansion 
converges most rapidly [ 11. Sum truncations occur four times in each of the non- 
singlet and singlet cases: ( 1) the Wilson functions P, in (2.16), (2) the initial quark 
and gluon distributions (3.3), (3) the evolution functions (2.22) and (4) the final 
structure function convolutions, (3.7). For the Laguerre coefficients of the Wilson 
functions and initial quark and gluon distributions, summing terms in the Laguerre 
series to n = 8 is sufficient to generate accuracy to within a fraction of one percent. 
To determine an appropriate cutoff for the evolution function sums, one must con- 
sider a tradeoff between truncation error and roundoff error. Each additional term, 
E,,(t) requires 2n2 + 4n + 10 matrix multiplications, which compounds roundoff 
error at each stage of iteration, even using double precision arithmetic. We tested 
the effect of roundoff error by comparison of E,(t = 0) to the identity matrix. For 
n 2 15 in double precision, roundoff error begins to become significant ( > 1%). 
Unless one is limited by usable memory, these calculations should be done in 
double precision arithmetic. Then, the tradeoff between convergence of the 
Laguerre series and roundoff error is not so critical. The convergence rate of the 
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structure function convolution (3.7) is somewhat dependent upon the choice of 
initial conditions, due to the ability of the truncated Laguerre series in (3.3) to 
accurately approximate the functions at q i. Using double precision, one may be 
reasonably assured of convergence of the sum (3.7) to within 1% for n = 8, regard- 
less of the initial choice of the structure function. The largest errors occur for small t 
values ( -C 0.20) and large x values ( 2 0.50) in both singlet and non-singlet cases. 

To summarize, sum truncations occur for determination of the Laguerre coef- 
ficients of P, in (2.16), F(x, qi) in (3.3), E(t, x) in (2.22) and for the determination 
of F(x, q2) in (3.7). The relative errors in these truncations at PI = 6 for double 
precision arithmetic are 5 %, 2%, 15 % and lo%, respectively, on the average. For 
n = 8, however, all of these truncation errors are reduced to well below 1%. Roun- 
doff errors become significant when determining E,(t), for values of n greater than 
15. The choice of n in (2.22), and (3.7) may be determined by the desired accuracy 
and efficiency, but should be normally between 8 and 15 terms. 

C. Results and Comparison of Methods 

The x dependence for the leading order non-singlet structure functions at fixed q2 
values is shown in Fig. 1 while the singlet quark and gluon functions are shown in 
Fig. 2 and 3. The initial non-singlet function at t = 0 was parametrized as 
x’.‘(l -x)2,6 [ 111 and the singlet quark and gluon were given by qs 
(t=O)=(l-X)’ and G (t = 0) = (1 - x)~, respectively. In the non-singlet case, 

FIG. 1. Valence quark distribution (9J vs x for fixed I values. 
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FIG. 2. Gluon distribution vs x for fixed f values. 

seven terms in (3.7) were sufficient for convergence to within one part in 10’ using 
double precision arithmetic. For the singlet case, eleven terms in (3.7) were 
necessary to ensure convergence to within 0.5% for most values of x and t, 
although the functions for large x ( >0.5) and t (>0.3) and slightly larger errors. 
The results in Figs. 1-3 agree favorably with those found by other methods 
[7, 15, 16-J. 

The major numerical advantage of the Laguerre method is the improvement of 
run time by a factor of 30 over brute force methods. This factor is relatively 
independent of the machine, as we tested on an IBM 3033, a PDP-11 and a 
PRIME 400. Array storage is comparable for the Laguerre method and other 
“brute force” methods, which evaluate the integrals (2.2) and differentials directly in 
(2.4). There are many advantages, other than run time improvement, that are 
realized by the Laguerre method. By expanding the functions in terms of Laguerre 
polynomials in (-In x), we have converted the integrals of (2.2) into sums (2.10), 
thus avoiding numerical integration errors. Errors in numerical solution of differen- 
tial equations have been minimized by calculating an evolution operator 
analytically. The use of a series expansion of the key functions not only provides a 

FIG. 3. Sea quark distribution vs x for I values of 0.04 (top), 0.20 (middle), and 0.36 (bottom) 
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natural starting point for solving (2.4) but allows one the freedom of truncating the 
program when the desired convergence limit is reached. The only remaining sources 
of error are truncation and roundoff, which are minimized by the method outlined 
in the last subsection. Thus, we have gained accuracy, stability and run time 
without additional memory requirements. 

The Laguerre method is also suitable for fitting structure functions to data by 
suitably adjusting Laguerre coefficients of the evolution functions [ 11. Once again, 
the freedom of choosing the truncations in the sums allows one to have better con- 
trol of the parameters used in fitting data. Furthermore, since the structure 
functions of many particle processes (deep-inelastic scattering, lepton pair produc- 
tion and e+e-) obey an Altarelli-Parisi type equation (2.4), the Laguerre method 
can be used in all of their analyses. We will discuss these and other applications of 
the method in the next section. 

IV. EXAMPLES USING THE LAGUERRE METHOD 

A. Deep-Inelastic Scattering 

In Sections II and III we outlined a method for solving the Altarelli-Parisi type 
equations (2,4) for leading order (QCD), which was oriented toward deep-inelastic 
scattering. The mathematical technique is also applicable to lepton-pair production 
processes (Drell-Yan) since the evolution is the same. In deep-inelastic scattering, 
we can also use the Laguerre method to incorporate higher order perturbative 
QCD corrections as well as some non-perturbative effects, such as target mass con- 
tributions. In this subsection, we outline the process by which these contributions 
may be added to the deep-inelastic structure functions. 

Perturbative QCD corrections to (2.4) occur in the P&x) terms as powers of 
%w): 

P,(a,, x) = (aJ27c) q?‘(x) + (LY,/27+ q.!‘(x) + ... ) (4.1) 

where P?)(x) is the leading order term used in Section II and III. The terms Pi!‘(x) 
correspond to two-loop corrections to the Feynman diagrams of deep-inelastic 
processes. These terms have been calculated in 4 +E dimensions using the MS 
scheme [ 173 and consist primarily of terms involving powers of x, In x and 
ln( 1 - x). To include higher order corrections, one proceeds in the same manner as 
the leading order calculation [ 11. First, one calculates Laguerre coefficients for the 
Ph?)(x) terms using the summation method outlined in the last section. Since these 
involve logarithmic functions and polynomials in x, the summation method is sim- 
pler and more accurate than Eq. (2.16). The evolution function coefficients (2.21 
and 2.28) are modified according to the revised equations (2.4). Once the new 
E,(x, t) are found, the process continues as with the leading order solutions. These 
solutions are involved and will not be treated here. The Laguerre method makes the 
problem of including higher order corrections more tractable. 
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A non-perturbative (with respect to a,) contribution which must be included in 
the deep-inelastic analysis is the target mass effect [7]. In the leading order 
analysis, the mass of the target is neglected. To be kinematically consistent, 
however, the target mass should be included in the analysis. To leading order in 
QCD, the method consists of writing the structure function in terms of a variable 
q(x), where 

Y/(x) = x[( 1 + JGz?j& 1 + JGizV@)] (4.2) 

and M is the target mass. The resulting non-singlet evolution equation has the 
form [7] 

v=[-125+(50(1nx)/3)]~(~,r)+fYx)@F(~,~), (4.3) 

wheref(x) = - [25( 1 + x’)]/[3( 1 -x)] and the convolution is defined by (2.2). We 
solve (4.3) in the same manner as (2.4a) via Eqs. (2.11) through (2.22). First we 
write the solution of (4.3) in terms of the evolution function E(x, t) as 

Substituting (4.4) into 

where ,4(x) = -12.5 + [50(ln x)1/3. Next, we expand f(x) and E(x, t) in terms of 
Laguerre polynomials of z = -In x, and equate the coefficients of each Laguerre 

F(r/, t)= E(x, t)@F(q, t=O). (4.4) 

(4.3), we obtain the differential equation for E(x, t): 

y=AE(x, t)+f(x)@E(x, t), 

polynomial in the sums to get 

y=AE,,+ i: (f,,-,-f,,-,-1)&n, 
m=O 

(4.6) 

where f, and E, are the Laguerre coefficients of f(x) and E(x, t), respectively. We 
can write (4.6) in matrix form as in (2.17) where the p0 terms are replaced by 
(fO + A) and the pi terms correspond to (f,-A.- ,). The corresponding evolution 
operator coefficients are 

E,(t) = exp[& + A) t] . i Af:tk/k!, 
k=O 

(4.7) 

where AZ = 1 and 

n-l 
Ak+l- 

” - C (fn-i-.fn-i-I)Af (4.8) 
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The procedure for convoluting E(z, t) with the initial structure function, F(q, t = 0), 
is identical to that of the leading order convolution. As before, the results are iden- 
tical to derivation of the target mass corrected functions calculated using a brute 
force method [7]. 

Other non-perturbative corrections to the structure functions (e.g., higher-twist 
contributions) are included as additional terms to the leading order structure 
functions [ 181, and can be added after use of the Laguerre method. 

B. Electron-Position (e-e+ ) Scattering 

We encounter a slightly different form of Eq. (2.4a) in direct photon production 
at measured transverse momentum from e-e + annihilation [19]. In this process, 
one investigates the evolution of the photon structure function, Dylye(x, q2). The 
evolution equation corresponding to (2.4) is given by 

2 Born 
Dy,qA-% 4 1 = &’ lx, 9 i! 

%kI12) 
) + -. 2n P,,(x) 0 DY,&? q2J, 

where 

1+(1-x)2 4 
q/yk d)=:cr. x(l -x) ‘j-p 

T 

(4.10) 

a is the line structure constant, s is the center of mass energy and k, is the trans- 
verse momentum of the photon with respect to the incoming electron momentum. 
Equation (4.9) differs from (2.4) in the lack of a differential on the left-hand side, 
which eliminates the need for an evolution operator. The Laguerre method is used 
in converting the convolution to a sum, whereby the resulting equation is solved 
algebraically. This not only simplifies the problem solution, but also avoids certain 
approximations and assumptions which must be made to solve (4.9) using Mellin 
moments [20]. We begin by writing (4.10) as 

(4.11) 

where g(qi) is found by integrating (4.10) over k, and h(x)= [l + (1 -x)~]/ 
[x( 1 -x)1. To leading order for 4 quark flavors, 

c(,(q2)/2x = 0.24/1n(q2//12). (4.12) 

Thus, expanding h(x) and D(x, q*) as Laguerre series and equating corresponding 
Laguerre coefficients, we get 

Dn(q’) = g(q i ) h + lntq2,n2j k=O in o’24 “f’ pk Dk, (4.13) 
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where h, and D, are Laguerre coefficients of h(x) and D(x, q2), pnpk are given by 
(2.15) for P,,(x), and 

Do = (g(d) hM1- WWdln(q2/~2))l. (4.14) 

We can now calculate D(qi) = C,N=,D,L,(z) at qi and increment to higher q2 by 
using (4.13) and (4.14). 

C. Application to Solid State Physics 

The Laguerre method has applications in any area where the convolution has the 
form of (2.2). This is the case in solid state physics with the Boltzmann equation 
which describes the deceleration of charged particles in solids [3]. The equation 
relating the density of particles, f(x, E), with energy E after traversing a path length 
x, can be written as 

dfk El ~=A(E)~~~g(x,~)h(r)=A(E)[gBhl, dx 

where A(E) is an energy dependent term, r = (1 - T/E), T is the energy transfer, 
g(x, E/t) =f(x, E/s) - E’ p2m(E/7)2m-1 f(x, E), h(z) = 72”(1 - 7)-('+m) and m is 
the power parameter of the cross section. In Ref. [3], the equation is solved using a 
moment approach. If the Laguerre approach is used, one can solve for the x 
evolution of the density function f(x, E) directly for a fixed energy E. The solution 
proceeds similarly to that of (2.4a) outlined in Section II. In this problem, the p, 
terms of (2.15) are replaced by Laguerre coefficients of h(z), which are easily 
calculable. The Laguerre coefficients of the evolution function are determined by 

II- I 
E,,(x) = eho.’ 1 Cixklk!, where Cz = 1, (4.16) 

r=k 

and 
n-l 

ckfl= 
!I ,;k (h,-i-h,-i-,) Cf, h-1 -0. (4.17) 

The result from (4.16) can be convoluted with a suitable initial condition for g 
(x=0, E/7), as outlined in [3], and the density functions, f(x, E), are found 
using (3.7). 

V. CONCLUSION 

We have considered integro-differential equations having the general form 

dF(x, t) ~ = P(x) @ F(x, t), 
dt 
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where the convolution on the right side is given by (2.2), and X, and t are in&pen- 
dent variables. Two common methods used in solving (5.1) consist of numerical 
solution by brute force (e.g., Euler method with Simpson integration) and use of 
Mellin transforms. Brute-force solutions require more CPU time and involve 
approximation methods which are inherently less accurate than the Laguerre 
method. Mellin transforms are often difftcult to invert and suffer in not directly 
involving the functions we wish to determine. In order to use Mellin transforms 
effectively in high-energy physics, one requires scattering data to be given in the full 
range of the variable x, which is generally not available. In other areas of physics, it 
is often difficult to attach a physical meaning to the Mellin transform of a function. 
The Laguerre method overcomes all of these disadvantages while allowing one 
freedom to choose the degree of accuracy by choosing the cutoff points for the sums 
in Eqs. (2.16), (2.22), (3.3) and (3.7). The only limitations are roundoff error (which 
is minimized by using double precision arithmetic) and truncation error. 

The first step in implementing the Laguerre method is to eliminate the 
logarithmic terms one obtains when performing the convolution in Eq. (5.1). By 
writing the polynomials P(x) and F(x, t) in terms of the variable z = -In x, the 
convolution results in a polynomial in z. When the convolution (2.2) is written in 
terms of z, it takes the form of a Laplace convolution with an exponential kernel. 
This form motivates the expansion of P(z) and F(z, t) in terms of Laguerre 
polynomials, whose orthogonality condition has the exponential kernel. The con- 
volution of two Laguerrre polynomials in z is a simple sum (2.10), so that the 
integro-differential equation (5.1) is reduced to an ordinary differential equation. In 
order to avoid numerical approximations to solve the resulting equation, we 
analytically find an evolution operator in the variable t which determines the 
solution based upon an initial parametrization of F(x, t) at t = 0. 

The use of Laguerre polynomials in z for converting the convolution to a simple 
operation appears to be the most efficient expansion in terms of convergence over 
other orthogonal polynomials (e.g., Legendre and Chebyshev) [ 11. The closure of 
(2.2) with respect to z and orthogonality property of Laguerre polynomials con- 
tribute to this efficiency. Furthermore, the natural relation between the convolution 
in z and the orthogonality condition for L,(z) allows the Laguerre coefficients of a 
function to be calculated in a straightforward manner (Eqs. (2.16) and (3.5)). The 
rapid convergence of the Laguerre sums provides numerical stability and efficiency 
as we showed in Section IIIB. 

In this work, we have implemented a method proposed by Furmanski and 
Petronzio [ 1 ] for solving integro-differential equations of the form given by (5.1). 
We have also introduced a new procedure for finding Laguerre coefficients (Sec- 
tion IIIA), which is simple and accurate for most analytic functions. The approach 
to determination of the evolution operator was different in this paper, but led to the 
same result, indicating that this method may be applicable to a wider class of 
integro-differential equations. The accuracy and efficiency of the Laguerre method 
was shown to be superior to other methods which have been used to solve Eq. (5.1). 
We have further illustrated the implementation of this approach to high energy 
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scattering processes as well as a solid state physics problem (Section IV). Integro- 
differential equations of the type given by (5.1) are found in many areas of 
mathematical physiscs, and it is evident that the Laguerre method provides a sim- 
ple, efficient, and numerically stable way to find solutions without the use of Mellin 
transforms. 

APPENDIX I 

In this section, we derive the recursion relation (2.20) and the corresponding 
form for E,,(t), Eq. (2.21). Each element of the column vector in (2.17) can be writ- 
ten as 

E,(t)=ePo’C (eA’)mp. (Al.l) 

Using Eq. (2.19), the sum in (Al .l ) can be evaluated in powers of A, so that 

E,(t) = epo’ k~og[z (A*),]. 
. I) 

(A1.2) 

The term in brackets is just the sum of the mth row of A’, so the problem of finding 
the elements E,(t) reduces to evaluating this term. First, 

B: = c (A”),,, (A1.3) 

then note that Bi= 1 for all m and B!,,=Cy=,p,, with the pi given by (2.15). To 
determine BL+ * from Bk, we write 

B;‘= i i (A),;(Ak),= f (A),;B;. (A1.4) 
y=op=o t/=0 

Since A has lower diagonal form, A my # 0 only for m > 4 + 1 and (Ak), # 0 only for 
q3p+k. Thus, Bz#O for q>k and 

m ~ 1 
Bkt’- 

m - 1 ~m-yB:. (A1.5) 
y=k 

Equation (A1.5) with the initial conditions for 811, and Bt, allows us to determine 
BL recursively, with E,(t) given by 

k 

E,(+@“k~o~““. (A1.6) 

Equation (A1.5) is equivalent to (2.20) while (A1.6) is identical to (2.21). 
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APPENDIX II 

We derive the sum in (2.28) for E,(t) in the singlet case and the corresponding 
recursion relations for Af: and BE. In this derivation, the terms jli,k (i = 1, 2) are the 
Laguerre coefficients of the eigenvalues, %,. These and the coefficients Q+ are found 
by using (2.16). We will consider both E,,,(t) and E,,,(t) together by writing E,,(t), 
with i representing subscript 1 or 2. Using Eqs. (2.26) and (2.27) with the property 
that 0: has its first (k - I ) sub-diagonal elements equal to zero, we can write 

E,.(f)=e”~~“‘k~o~~n~k(D~),pQi,,, 
. p=o 

where Df is the sub-diagonal matrix 

(A2.1) 

(A2.2) 

In our notation, we let 
n -- k 

c (Df),Qi,P = A: for i= 2 
p=o 

=B; for i= 1 (A2.3) 

to obtain Eq. (2.28). 
In order to determine Af: and BJ: from A: and Bz, we first consider Eq. (2.14) for 

finding the Laguerre coefficients, E,?(t): 

(A2.4) 

For i = 1, we substitute (A2.1) into (A2.4) to get 

Equating powers of t and using Eqs (2.23) and (2.24) we get 

n- 1 
Bktl - 

n - -h,oQ,,oB:+ c p,,-,B:. 

Similarly, for A k 1: l, we obtain 
n-l 

Ak+l,A n ~oQl,oA:+ 1 P,-/A:. 
l=k 

(A2.6) 

(A2.7) 
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The remaining task at this point is the determination of Ajj and Bz, which 
are equal to Q0 and Q,,,, respectively. One approach involves calculation of Qi 
directly, which is tedious. Alternatively, if we note that (A2.6) would be a simple 
recursion without the term involving pnPr, we use the other term to motivate the 
definition of another variable bf: as 

b; = B: - ( -~-,.oQ~.o)kB:, (A2.8) 

with k >0 and hg = 0. Determining the recursion relation for h: is equivalent to 
finding BI: from Bz. From (A2.8) and (A2.6) we see that 

~j:+‘+~,,oQzd:=BI:+’ + ~-,.oQz.oB: = c P,--,B:, (A2.9) 
,=k 

indicating that the hf: terms have the same recursion relation, except that 6: =O, 
while Bi = Q,,, # 0. A condition analogous to (A2.9) allows one to calculate a: in 
terms of the A:. Now we relate Bf and Ajj to the bi and ui terms by the following. 

First note that 

and 

A:: = U%)noQ,,o = (b,, - U”Qm~ (A2.10) 

so that Qz,oB;; = Ql,oA;:=O by the orthogonality of Q, and Qz. Using (A2.8), 
(A2.10) and the idempotency of Q, and Q,, we can write 

Q2,0b::= -(-~l,o)NQz,oBI1 and Ql,04= -(-~~l,o)“Ql,oA~~ (A2.11) 

which relates Ajj and Bz to a; and !I;:. Furthermore, we have 

A: + B: = Q ,.,I + Q,.,, = 4 (A2.12) 

where I is the 2 x 2 identity matrix. Thus 

Ali = Q,+C + Qzd- BE) 

= Qz.o - CQ,,o4: - (- 1 )"Qz,oW~;',, (A2.13) 

and 

B: = Qd- A:) + Qz,oB: 
= Q,,, + CQd: - (- 1 ,nQdWJ$,. (A2.14) 

Equations (A2.6) through (A2.9), (A2.13) and (A2.14) are all that is necessary to 
derive the Laguerre coefficients of the evolution matrix in Eq. (2.28). 
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